
COMP 110/L Lecture 17

Maryam Jalali

Some slides adapted from Dr. Kyle Dewey



Outline

•Strings

•String.length

•String.split

•Multidimensional arrays



Strings

• A string is an ordered sequence of characters.

• However, because of the String class, we never directly 

interact with this representation.

• Java provides many methods as part of the String class 

that can be used to process and manipulate strings.

• These methods do not change the strings since strings in 

Java are immutable.



Basics 

• Declare and assign using regular assignment operator

String firstName = “Denise";

String lastName = "Ritchie";

//we can also reassign values

firstName = "Tom";

•Note that the reassignment in the last line in the 

example does not change the original string.

• It just makes the variable firstName point to a new 

string



String methods

 These methods are called using the dot notation:

String gangsta = "Dr. Dre";

System.out.println(gangsta.length());   // 7

Method name Description

indexOf(str) index where the start of the given string 
appears in this string (-1 if it is not there)

length() number of characters in this string

substring(index1,index2)

or

substring(index1)

the characters in this string from index1
(inclusive) to index2 (exclusive);

if index2 omitted, grabs till end of string

toLowerCase() a new string with all lowercase letters

toUpperCase() a new string with all uppercase letters



Modifying strings
 Methods like substring, toLowerCase, etc. create/return

a new string, rather than modifying the current string.

String s = "lil bow wow";

s.toUpperCase();

System.out.println(s);   // lil bow wow

 To modify a variable, you must reassign it:

String s = "lil bow wow";

s = s.toUpperCase();

System.out.println(s);   // LIL BOW WOW



Comparing strings
 Relational operators such as < and == fail on objects.

Scanner console = new Scanner(System.in);

System.out.print("What is your name? ");

String name = console.next();

if (name == "Barney") {

System.out.println("I love you, you love me,");

System.out.println("We're a happy family!");

}

 This code will compile, but it will not print the song.

 == compares objects by references (seen later), so it often 
gives false even when two Strings have the same letters.



The equals method

 Objects are compared using a method named equals.

Scanner console = new Scanner(System.in);

System.out.print("What is your name? ");

String name = console.next();

if (name.equals("Barney")) {

System.out.println("I love you, you love me,");

System.out.println("We're a happy family!");

}

 Technically this is a method that returns a value of type boolean,

the type used in logical tests.



String test methods

String name = console.next();

if (name.startsWith("Dr.")) {

System.out.println("Are you single?");

} else if (name.equalsIgnoreCase("LUMBERG")) {

System.out.println("I need your TPS reports.");

}

Method Description

equals(str) whether two strings contain the same characters

equalsIgnoreCase(str
)

whether two strings contain the same characters, 
ignoring upper vs. lower case

startsWith(str) whether one contains other's characters at start

endsWith(str) whether one contains other's characters at end

contains(str) whether the given string is found within this one



Type char

 char : A primitive type representing single characters.

 Each character inside a String is stored as a char value.

 Literal char values are surrounded with apostrophe
(single-quote) marks, such as 'a' or '4' or '\n' or '\''

 It is legal to have variables, parameters, returns of type char

char letter = 'S';

System.out.println(letter);              // S

 char values can be concatenated with strings.

char initial = 'P';

System.out.println(initial + " Diddy");  // P Diddy



The charAt method
 The chars in a String can be accessed using the charAt method.

String food = "cookie";

char firstLetter = food.charAt(0);   // 'c'

System.out.println(firstLetter + " is for " + food);

System.out.println("That's good enough for me!");

 You can use a for loop to print or examine each character.

String major = "CSE";

for (int i = 0; i < major.length(); i++) {

char c = major.charAt(i);

System.out.println(c);

}

Output:
C

S

E



char vs. String

 "h" is a String
'h' is a char (the two behave differently)

 String is an object; it contains methods

String s = "h";

s = s.toUpperCase();        // 'H'

int len = s.length();       //  1

char first = s.charAt(0);   // 'H'

 char is primitive; you can't call methods on it

char c = 'h';

c = c.toUpperCase();   // ERROR: "cannot be dereferenced"



Comparing char values

 You can compare char values with relational operators:

'a' < 'b' and    'X' == 'X' and    'Q' != 'q'

 An example that prints the alphabet:

for (char c = 'a'; c <= 'z'; c++) {

System.out.print(c);

}

 You can test the value of a string's character:

String word = console.next();

if (word.charAt(word.length() - 1) == 's') {

System.out.println(word + " is plural.");

}



14

Formatting Output

Use the printf statement.

System.out.printf(format, items);

Where format is a string that may consist of substrings and 

format specifiers. A format specifier specifies how an item 

should be displayed. An item may be a numeric value, 

character, boolean value, or a string. Each specifier begins 

with a percent sign. 



15

Frequently-Used Specifiers
Specifier Output Example 

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

 
int count = 5; 

double amount = 45.56;     

System.out.printf("count is %d and amount is %f", count, amount); 

 

 

display            count is 5 and amount is 45.560000 

 

items 



String.length
Returns the number of chars in the given String



String.length
Returns the number of chars in the given String

“abc”.length()



String.length
Returns the number of chars in the given String

“abc”.length()  

3



String.length
Returns the number of chars in the given String

“abc”.length()  

3

“”.length()



String.length
Returns the number of chars in the given String

“abc”.length()  

3

“”.length()  

0



Example:
StringLength.java



String.split



Tokenizing
• It is common to store different pieces of data as a 

string such that each individual piece of data is 

demarcated by some delimiter.

• Often we need to process such strings to extract each 

individual piece of data.

• Processing such strings is usually referred to as parsing.

• In particular, a string is “split” into a collection of 

individual strings called tokens (thus the process is also 

sometimes referred to as tokenizing).



String.split
Allows for a String to be separated into different parts.

Returns an array of Strings (String[]).



String.split
Allows for a String to be separated into different parts.

Returns an array of Strings (String[]).

“foo,bar”.split(“,”)



String.split
Allows for a String to be separated into different parts.

Returns an array of Strings (String[]).

“foo,bar”.split(“,”)

new String[]{“foo”, “bar”}



Example:
SplitOnComma.java



What splitTakes
split takes a regular expression.

Regular expressions describe different string patterns.



What splitTakes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)



What splitTakes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)  

“,”:matches only one pattern:a comma



What splitTakes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)  

“,”:matches only one pattern:a comma

“foo.bar”.split(“.”)



What splitTakes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)  

“,”:matches only one pattern:a comma

“foo.bar”.split(“.”)  

“.”: matches any singlecharacter



What splitTakes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)  

“,”:matches only one pattern:a comma

“foo.bar”.split(“.”)  

“.”: matches any singlecharacter  

“foo.bar”.split(“\\.”)



What splitTakes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)  

“,”:matches only one pattern:a comma

“foo.bar”.split(“.”)  

“.”: matches any singlecharacter  

“foo.bar”.split(“\\.”)

“\\.”:matches a period (backslash followed by a period)



Example:
SplitOnAnything.java



Multidimensional Arrays



Recap - Arrays
Arrays are fixed-length sequences  

of elements of the same type.



Recap - Arrays
Arrays are fixed-length sequences of 

elements of the same type.

new char[]{‘a’, ‘b’, ‘c’}  

new int[]{1, 2, 3}

new String[]{“foo”, “bar”}

new double[]{1.2, 3.4}



39

Motivations

 

Chicago 

Boston 

New York 

Atlanta 

Miami 

Dallas 

Houston 

 

Distance Table (in miles)   

 

Chicago    Boston    New York     Atlanta    Miami     Dallas    Houston 

        0            983             787            714         1375       967         1087 

      983            0               214           1102        1763      1723        1842 

      787          214               0              888         1549      1548        1627 

      714         1102            888              0             661       781          810 

     1375        1763           1549           661            0         1426         1187 

      967         1723           1548          781          1426         0            239 

    1087         1842           1627          810          1187       239            0 

        1723           1548          781          1426         0            239 

Thus far, you have used one-dimensional arrays to model linear
collections of elements. You can use a two-dimensional array to
represent a matrix or a table. For example, the following table that
describes the distances between the cities can be represented using
a two-dimensional array.



40

Motivations



Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.



Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

new int[][]{ new int[]{1, 2, 3},

new int[]{4, 5},

new int[]{6},  

new int[0],

new int[]{7, 8, 9}

}



Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

new int[][]{ new int[]{1, 2, 3},

new int[]{4, 5},

new int[]{6},  

new int[0],

new int[]{7, 8, 9}

}

Corresponding type:int[][]



Multidimensional Array Utility
Commonly used for representing tables



Multidimensional Array Utility
Commonly used for representing tables

13 12 19

64 89 247

78 57 21



Multidimensional Array Utility
Commonly used for representing tables

13 12 19

64 89 247

78 57 21

new int[][]{ new int[]{13, 12, 19},

new int[]{64, 89, 247},

new int[]{78, 57, 21} }



Accessing Rows
One row of a two-dimensional array is an array...



Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;  

int[] row = array[0];



Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;  

int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.



Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;  

int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

int[][] array = ...;  

int[] row = array[0];

int columnElement = row[5];



Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;  

int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

int[][] array = ...;  

int[] row = array[0];

int columnElement = row[5];

int[][] array = ...;

int columnElement = array[0][5];





53

Lengths of Two-dimensional Arrays

int[][] x = new int[3][4];



Lengths of Two-dimensional Arrays, cont.

int[][] array = {

{1, 2, 3},

{4, 5, 6},

{7, 8, 9},

{10, 11, 12}

};

array.length

array[0].length

array[1].length

array[2].length

array[3].length

array[4].length      ArrayIndexOutOfBoundsException



55

Ragged Arrays

Each row in a two-dimensional array is itself an array. So, the 

rows can have different lengths. Such an array is known as a 

ragged array. 

For example, 

int[][] matrix = {    

{1, 2, 3, 4, 5},

{2, 3, 4, 5},

{3, 4, 5},

{4, 5},

{5}

};

matrix.length is 5

matrix[0].length is 5

matrix[1].length is 4

matrix[2].length is 3

matrix[3].length is 2

matrix[4].length is 1



Example:
AccessTwoDimensionalElement.java



More 2D Array  
Examples

•PrintRow2D.java

•PrintCol2D.java


